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Abstract—Deep Learning for Time-series plays a key role in
AI for healthcare. To predict the progress of infectious disease
outbreaks and demonstrate clear population-level impact, more
granular analyses are urgently needed that control for impor-
tant and potentially confounding county-level socioeconomic and
health factors. We forecast US county-level COVID-19 infections
using the Temporal Fusion Transformer (TFT). We focus on
heterogeneous time-series deep learning model prediction while
interpreting the complex spatiotemporal features learned from
the data. The significance of the work is grounded in a real-world
COVID-19 infection prediction with highly non-stationary, finely
granular, and heterogeneous data. 1) Our model can capture the
detailed daily changes of temporal and spatial model behaviors
and achieves better prediction performance compared to other
time-series models. 2) We analyzed the attention patterns from
TFT to interpret the temporal and spatial patterns learned by the
model. 3) We collected around 2.5 years of socioeconomic and
health features for 3142 US counties, such as observed cases,
and a number of static (age distribution and health disparity)
and dynamic features (vaccination, disease spread, transmissible
cases, and social distancing). Using the proposed framework,
we have shown that our model can learn complex interactions.
Interpreting different impacts at the county level would be crucial
for understanding the infection process that can help effective
public health decision-making.

Index Terms—Time Series Deep Learning, Interpretability, Tem-
poral Fusion Transformer, Spatiotemporal, Attention, County-
Level COVID-19 prediction.

I. INTRODUCTION

The rapid spread of coronavirus disease has had a profound
impact on the human population, making accurate forecasting
of infection cases critical for administrative planning and
resource allocation for public health. To achieve this, it is
necessary to conduct a detailed study of trends and develop
short- and long-term prediction tools that can evaluate infec-
tion processes at different speeds and scales in various geo-
graphic regions. Several features of the current pandemic make
it challenging to develop successful time-series forecasting
models. Firstly, there is no prior epidemiological knowledge of
the disease dynamics to base models. Secondly, the data gener-
ation process and disease influences, policies, and individual
behaviors are non-stationary, making it difficult to generate
accurate predictions. Additionally, the data sources are often
noisy due to reporting issues or undocumented infections.
Finally, beyond accuracy, it is crucial to have explainable
models that can help interpret the results meaningfully for the
healthcare system, policymakers, and the public.

Many forecasting models such as SEIR [1] [2], and machine
learning autoregressive models including ARIMA [3] [4] [5]

have been used for COVID-19 spread forecasting. Addition-
ally, deep learning models, such as Long Short Term Memory
(LSTM) networks [6], Gated Recurrent Unit (GRU) [7], CNN
[8], and attention-based networks, such as Transformer [9]
[10], have been applied to further improve COVID-19 fore-
casting. To our knowledge, however, no prior studies have
utilized an interpretable attention mechanism to quantitatively
analyze both spatial and temporal patterns of infection cases at
the US county level. Although many state-level, county-level
and Points of Interest (POI) [11] studies have been reported,
prior works have mostly focused on forecasting. However,
forecasting COVID-19 at a fine-grained level, such as the
county level, is challenging due to the diverse population
sizes, socio-economic differences, and lack of data availability.
Furthermore, non-stationary time series (with their distribution
drifting over time) [12] or time series with extreme events
[13] or unknown events like COVID variants are particularly
challenging to model and interpret.

To address the aforementioned gap, we propose the use of
the Temporal Fusion Transformer (TFT) model [14] to forecast
COVID-19 infections and interpret the model’s predictions
by extracting its attention weights. This study focuses on
forecasting COVID-19 infections at the daily level for 3,142
US counties. To achieve this, we collected a comprehensive
set of county-level input features spanning 2.5 years. Our
results demonstrate that the proposed TFT model outperforms
related works in terms of prediction accuracy and can extract
interesting temporal and spatial patterns from raw data. In
summary, the main contributions of our research are:

• We collected static covariates, observed inputs, and
known future inputs, for 3,142 US counties from February
29, 2020, to May 17, 2022. We performed data cleaning
to remove outliers and ensure the quality of the dataset.

• We compared our proposed Temporal Fusion Transformer
(TFT) Model with four other deep learning time-series
models in a multivariate multi-horizon setting. Our exper-
imental results showed that the TFT model outperforms
the other models across all five evaluation metrics used
in this work, demonstrating its effectiveness in predicting
COVID-19 infection cases at the county level.

• To gain deeper insights into the spatiotemporal patterns
learned by the TFT model, we analyzed its predictions
and self-attention weights. We demonstrated that the
model can capture temporal patterns, including infection
trends, seasonality, and holiday effects in a meaningful
way. Moreover, the model’s attention mechanism en-



ables it to focus on more infection-affected geographical
regions and perform well across different population
demographics.

• Moreover, to facilitate reproducibility and further re-
search in this area, we will make our code available on
GitHub.

The rest of this paper is organized as follows. Section
II presents details on the data collection process, feature
descriptions, and preprocessing. In Section III, we define the
problem statement and provide the necessary mathematical
formulations. Next, Section IV provides an overview of the
TFT model architecture and its interpretable self-attention
mechanism. We then describe the experimental setups in
Section V and provide a comprehensive comparison of our
proposed TFT model with related works in Section VI. The
spatiotemporal patterns and important insights learned by the
model are analyzed in Sections VII and VIII, respectively.
Section IX presents the input feature importance from TFT.
Related works are discussed in Section X, and we conclude
this paper with Section XI, where we provide concluding
remarks, lessons learned, and discuss the possible impact on
future work.

II. INPUT DATA AND FEATURES

In this section, we describe the data collection process,
feature description, and data preprocessing steps.

A. Data Collection

We collected our dataset from multiple sources, including
CDC (Centers for Disease Control and Prevention), USA
Facts [15], and Unacast [16]. The collected data covers a
time frame from February 29, 2020, to May 17, 2022, and
includes a wide range of county-level features. However, for
the vaccination feature, we used data from the CDC [17]
starting from December 14, 2020, when the US initiated a
nationwide COVID-19 vaccination campaign, as it was the
earliest available data.

Fig. 1: The feature groups and influencing factors.

Fig.1 summarizes the feature groups with the influencing
factors they capture and the county characteristics they rep-
resent. In all associated features, the county FIPS codes are

used as unique identifiers for those geographic areas. Table I
lists the features with respective sources and descriptions.

B. Data Preprocessing

To ensure the quality of our data, we removed outliers
caused by rare events or human errors during the data collec-
tion process. We applied the following thresholds to identify
outliers:

lower = Q1− (7.5 ∗ IQR)

upper = Q3 + (7.5 ∗ IQR)
(1)

where Q1 and Q3 represent the first and third percentiles,
and IQR is the interquartile range. The data statistics before
and after removing the outliers are presented in Table II, which
demonstrates the effectiveness of our outlier removal process.

TABLE II: Statistics of input features.

Feature Original Cleaned
Mean Std Mean Std

Case (Target) 31.67 337.4 27.18 174.2
Age Distribution 0.576 0.094 0.576 0.094
Health Disparities 0.368 0.198 0.368 0.198
Vaccination 20.61 22.92 20.61 22.92
Disease Spread 0.150 0.194 0.150 0.193
Social Distancing 0.784 0.228 0.795 0.229
Transmissible Cases 0.492 0.210 0.491 0.210

The large standard deviation of the ”Cases” feature, as
shown in Table II, indicates that the data is highly volatile,
with a 10x and 5x difference for raw and outlier-removed data,
respectively. It is worth noting that we opted not to apply a
moving average to smooth the dataset further, as doing so
would filter out any seasonal patterns present in the daily raw
data. Prior to fitting the data to our models, we normalized both
the input and target features using standard scaling techniques.

C. Ground Truth

The ground truth data in our dataset exhibits three distinct
waves, which are depicted in Fig. 2. These waves were
identified by a surge in the number of COVID-19 cases caused
by new variants of the virus.

Fig. 2: Ground truth of reported COVID-19 cases [15] along
with dataset splits in the three waves.

The first wave occurred between October 2020 and March
2021, followed by a second wave between July and October



TABLE I: Description of input feature groups and targets.

Input Type Feature Description Data Source
Target Cases Daily COVID-19 cases USA Facts [15]

Static Age Distribution Percentage of population aged 65 or older SVI [18]Health Disparities Uninsured population percent and socioeconomic status
Vaccination Percentage of population fully vaccinated CDC [17]

Observed
Disease Spread Fraction of total cases from the last 13 days (one incubation period) USA Facts [15]
Transmissible Cases Population size divided by cases from the last 13 days USA Facts [15]
Social Distancing Change in distance travelled relative to baseline(previous year), based on cell

phone mobility data
Unacast [16]

Known Future SinWeekly sin (day of the week/7) DateCosWeekly cos (day of the week/7)

2021. The third wave began in December 2021 and lasted until
March 2022, reaching its peak around January 15, 2022, due
to the emergence of more virulent strains such as Delta and
Omicron [15]. We refer to this period as the third wave, con-
sistent with previous studies [19]. To evaluate the performance
of our model, we divided the data into different phases near the
third wave, as illustrated in Fig. 2, and described in detail in
Table III. Demonstrating the model’s ability to perform well
in the face of changing trends such as these is essential to
establishing its generalizability and robustness.

III. PROBLEM STATEMENT

Our goal is to create a deep learning model that can
accurately predict daily COVID-19 cases for each of the 3142
counties in the United States. To achieve this, we use a mul-
tivariate multi-horizon approach that integrates heterogeneous
types of inputs for each county. Our prediction model denoted
as f(.), is defined as follows:

ŷi(t, τ) = f(τ, yi,t−k:t, zi,t−k:t,xi,t−k:t+τ , si) (2)

Fig. 3: Time-series forecasting with static covariates, observed
inputs, and known future events.

where ŷi(t, τ) represents the predicted number of cases at
time t ∈ [0, Ti] for county i, τ days into the future. Ti is the
length of the time series period, which for our case is the same
for each county. For instance, we use the previous 13 days of
data to forecast the future 15 days. Our approach employs
the Temporal Fusion Transformer (TFT) as the primary time-
series model. Fig. 3 provides a high-level overview of data
model preparation for our research. Moreover, we seek to

understand the model’s inner workings and interpretability
through attention-based analysis.

For each unique county i in our dataset, we associate a time
series model that takes three types of covariates as inputs:

1) Static Inputs: Each county i is associated with a set of
static inputs si, which do not vary over time and are
specific to that county’s demographics.

2) Observed or Past Inputs: Observed inputs are time-
varying features known at each timestamp t ∈ [0, Ti]
(e.g., Vaccination, Disease Spread, Social Distancing,
Transmissible Cases), but their future values are un-
known. We incorporate all past information within a look-
back window k (past 13 days), using target (cases) and
observed inputs upto the forecast start time t (yi,t−k:t =
{yi,t−k, · · · , yi,t} and zi,t−k:t = {zi,t−k, · · · , zi,t}).

3) Known Future Inputs: These inputs xi,t can be mea-
sured beforehand (e.g., sine and cosine of the day of a
week at a given date) and are known at the time of predic-
tion. We add known future inputs across the entire range
for TFT (xi,t−k:t = {xi,t−k, · · · ,xi,t, · · · ,xi,t+τ}).
Other models which don’t exclusively support known
future inputs incorporated this feature up to the forecast
start time t.

The time series model outputs daily COVID-19 case fore-
casts ŷi(t, τ) for τmax time steps, where τ ∈ 1, ..., τmax is the
daily prediction interval in the future (up to 15 days).

IV. TEMPORAL FUSION TRANSFORMER

To understand the rationale behind choosing TFT [14] for
this study, we give a theoretical background of TFT and its
self-attention weights, which we later extract to interpret the
spatiotemporal patterns of COVID-19 infection.

A. Model Architecture
Fig. 4 shows a brief overview of the TFT model architecture

for three types of input covariates and the target output. We
highlighted four key components of the model as follows:

1) Embedding and input transformation are performed
on static metadata, time-varying past inputs, and time-
varying known future inputs. The model inputs are passed
through a Variable Selection Network (VSN) to select the
most salient features and filter out noise.

2) LSTM layer enhances learning significant points in the
surrounding (e.g. anomalies, cyclical patterns) by lever-
aging local context. Past inputs are fed into the encoder,



Fig. 4: TFT architecture [14]. TFT effectively builds feature
representation from static covariates, observed inputs, and
known future events. The transformer adopts four key layers
from the bottom: (L1) Embedding & Input Transformation,
(L2) Variable Selection, (L3) LSTM, (L4) Self-Attention.

whereas known future inputs are fed into the decoder. The
outputs go through a static enrichment layer. For example,
the static covariate features (e.g., Age distribution, Health
Disparities) provide the context vectors (cs, cc, ch, ce) to
conditions for temporal dynamics: (a) cs being fed to the
temporal VSN blocks, (b) (cc, ch) setting up the initial
cell state and hidden state vectors of LSTM for local
processing of temporal features, and (c) ce enriching of
temporal features at the later static enrichment phase.

3) Static enrichment layer uses Gated Residual Network
(GRN) to enhance temporal features with static metadata,
as static features often influence temporal dynamics.
Gated Residual Network (GRN) works as its building
block.

4) Interpretable multi-head self-attention takes static-
enriched temporal features as inputs and learns long-
range temporal dependencies. The self-attention can ac-
cess all previous states and weigh them according to a
learned measure of relevance.

B. Attention Weight in TFT

TFT uses the self-attention mechanism to learn long-term
time-dependent relationships. This is modified from the multi-
head attention in transformers [20] to enhance explainability.
In this section we explain, how the attention works before
using them to interpret different spatiotemporal patterns later
in Section VII & VIII.

Given, values, keys, and queries as V, K, and Q, attention
can be defined as below where A() is a normalization function:

Attention(Q,K,V) = A(Q,K)V (3)

Multi-head attention [20] improves the learning capacity of
this standard attention by employing different heads (Hh) for
different representations and then combining them:

MultiHead(Q,K,V) = [H1, · · · ,HmH
]WH

Hh = Attention(QW
(h)
Q ,KW

(h)
K ,VW

(h)
V )

(4)

TFT [14] improved this multi-head attention by sharing
values in each head and additively integrating as follows:

InterpretableMultiHead(Q,K,V) = H̃WH

H̃ = Ã(Q,K)VWV

=
1

H

mH∑
h=1

Attention(QW
(h)
Q ,KW

(h)
K ,VWV )

(5)

After the static-enrichment layer, the enriched tem-
poral features are grouped into a matrix Θ(t) =
[θ(t,−k), . . . , θ(t, τ)]T , where k is the encoder length and τ
is the forecast horizon. At each forecasting time, t, the self-
attention layer Ã calculates a matrix of attention weights. The
multi-head attention at each forecast horizon τ is then defined
as an attention-weighted sum of lower-level features at each
position n ∈ (−k, τmax), given by the following equation:

β(t, τ) =

τmax∑
n=−k

α(t, n, τ)θ̃(t, n) (6)

where α(t, n, τ) is the (τ, n)-th element of Ã and θ̃(t, n) is
a row of Θ̃(t) = Θ(t)Wv . For each forecast horizon τ , the
importance of a previous time point n < τ (e.g. prior day)
can be calculated by analyzing the α(t, n, τ) values across
time steps (e.g. days) and entities (e.g. counties).

In our study, we utilized the PyTorch implementation of
TFT [21]. The interpretable multi-head attention weight is a
(Ns, τ,HHH, k + τ) matrix, where Ns is the total number of
sequences in the dataset, τ is the forecasting horizon (15 days),
HHH is the number of attention heads, and k is the number of
prior days (13 days). Ns can be computed by Nd×(k+τ−1),
where Nd is the number of time steps per county. The upper
right half of the attention matrix is masked since α(t, i, j) =
0,∀i > j. The mean is then taken over by the attention heads
to obtain the attention weight for each day at each county
level. An illustration of this process is shown in Fig. 5.

V. EXPERIMENTAL SETUP

In this section, we describe the design of the ex-
periments with the runtime environments we used, our
train/test/validation splits, and how we performed the hyper-
parameter tuning.



Fig. 5: Flow of aggregation and selection for TFT attention weights.

A. Data Splits
Table III illustrates the partitioning of the dataset into

training, validation, and test sets using different dataset splits.
Unless explicitly mentioned, all experiments in this study used
the Primary split. In Section VII-A, we used other splits
to evaluate our model’s ability to learn and perform well on
different trends of the COVID-19 infection. The validation set
in each split comprises the next 15 days after the training
period, and the test set comprises the following 15 days after
the validation period.

TABLE III: Dataset splits and dates.

Split Start End Dataset

Primary
02-29-2020 11-29-2021 Train
11-30-2021 12-14-2021 Validation
12-15-2022 12-29-2022 Test

Rising 3rd Wave
02-29-2020 12-31-2021 Train
01-01-2022 01-15-2022 Validation
01-16-2022 01-30-2022 Test

Falling 3rd Wave
02-29-2020 01-31-2021 Train
02-01-2022 02-15-2022 Validation
02-16-2022 03-02-2022 Test

Post 3rd Wave
02-29-2020 02-28-2021 Train
03-01-2022 03-15-2022 Validation
03-16-2022 03-30-2022 Test

B. Hyperparameter Tuning
We evaluated the prediction performance of our TFT model

and compared it with four other deep learning-based models,
namely LSTM, Bidirectional-LSTM (Bi-LSTM), NBEATS,
and NHiTS. The LSTM and Bi-LSTM models were imple-
mented using TensorFlow, while for NBEATS and NHiTS we
used the Darts framework [22]. The PyTorch implementation
of TFT [21] was used in our experiments. We tuned the
models’ hyperparameters using Optuna [23], with 25 trial runs
for each model and selected the best configuration based on the
validation loss. Table IV summarizes the models’ parameters
and the tuning results. All models are optimized using Adam
optimizer and MSE loss. We used the mean squared error
(MSE) as the loss function, consistent with prior works on
COVID-19 forecasting [12] [24].

C. Computational Resources

We conducted our model experiments on HPC clusters
including the GPU nodes in Table V. The minimum memory
requirement is 32GB of RAM. We maintained both docker
and singularity containers for the full reproducibility of our
work.

TABLE V: Runtime environment and hardware specification.

Driver CUDA Processor NVIDIA GPU

470.82.01 11.4 Intel Xeon
A100-SXM4-40GB
Tesla P100-PCIE
Tesla V100-SXM2

VI. PERFORMANCE BENCHMARKS

A. Evaluation Metrics

Our forecasting models are evaluated using a range of met-
rics commonly used in time-series forecasting and COVID-19
infections prediction, including Mean Absolute Error (MAE),
Root Mean Square Error (RMSE), Root Mean Square Loga-
rithmic Error (RMSLE), Symmetric Mean Absolute Percent-
age Error (SMAPE), and Normalized Nash-Sutcliffe Efficiency
(NNSE) [25] with definitions given in the Appendix A. These
metrics have been widely adopted to evaluate the performance
of time-series forecasting models [26] [27] [28] [29]. We use
the scikit-learn [30] implementation of these metrics.

Normalized Nash-Sutcliffe Efficiency (NNSE) is used as
an overall measure of model performance. It is defined as
1/(2−NSE), where NSE is equivalent to the coefficient of
determination (R2). Unlike other metrics, NNSE is robust to
error variance and has a range of [0, 1]. A model with NNSE =
1 represents a perfect fit, while a model with NNSE = 0.5 has
the same error variance as the observed time series. When the
error variance is larger, NNSE will be in the range of (0, 0.5).

MAE is preferred when we want to penalize the model
equally irrespective of the error magnitude, whereas RMSE
is used to penalize more for larger outliers. Since SMAPE
measures the proportional error, it is more appropriate for
comparing the performance of models across counties with
different population sizes. RMSLE measures the difference



TABLE IV: Model training and network parameters (optimal values are in bold).

Model Parameters Value Parameters Value Parameters Value

TFT learning rate 1e-3, 1e-4 batch size 64 attention head 1, 4
hidden layer 16, 32, 64 dropout rate 0.2 gradient clip 0.01, 1.00

LSTM learning rate (1e-5, 1e-3), 1.26e-5 batch size 32, 64, 128 layers 2, 3, 4
hidden size 32, 64, 128 dropout 0, 0.1, 0.2, 0.3

Bi-LSTM learning rate (1e-5, 1e-3), 2.46e-5 batch size 32, 64, 128 layers 2, 3, 4
hidden size 32, 64, 128 dropout 0, 0.1, 0.2, 0.3

NBEATS learning rate (1e-5, 1e-3), 1e-5 batch size 32, 64, 128 layer width 256
layers 2, 3, 4 dropout 0, 0.1, 0.2, 0.3 num stacks 30

NHiTS learning rate (1e-5, 1e-3), 4.26e-5 batch size 32, 64, 128 dropout 0.1
layers 2, 3, 4 layer width 512 num stacks 3

(a) Train results of TFT (b) Test results: TFT predictions (green line) outperform related
work with high accuracy

Fig. 6: Performance comparison of TFT with other four time-series models (on the Primary split).

between the logarithmic predictions and the logarithmic true
values, and is useful when the error distribution is skewed.

B. Comparison with Related Works

The test results for the hyperparameter-tuned models on the
Primary split using are presented in Table VI. A lower score
is better for MAE, RMSE, and SMAPE. Higher is better for
NNSE.

TABLE VI: Prediction performance comparison on the test
set. The best results are in bold.

Model MAE RMSE RMSLE SMAPE NNSE
TFT 35.68 221.3 1.347 0.842 0.679
LSTM 40.27 267.1 1.434 1.054 0.616
Bi-LSTM 40.36 261.8 1.465 1.022 0.626
NHiTS 36.79 247.5 1.366 1.066 0.628
NBEATS 41.22 244.8 1.649 1.134 0.633

Table VI demonstrates that the TFT model outperforms the
other models across all evaluation metrics. Fig. 6 presents the
aggregated prediction plots. During training, there were two
significant error spikes for the TFT predictions on Christmas
day (Dec 25, 2020) and US Labor Day (Sep 06, 2021),
which corresponded with substantial drops in reported cases.
While our outlier removal step partially mitigated these two
significant drops, they still resulted in large errors in the
predictions.

VII. INTERPRETING TEMPORAL PATTERNS

Time series data typically exhibit various temporal patterns,
such as trend, seasonal, and cyclic patterns. 1) Trend is a long-

term increase or decrease in the data, which can be linear or
non-linear. 2) Seasonal patterns are affected by a fixed known
frequency, such as year, month, or week. 3) Cyclic patterns,
on the other hand, exhibit rise and fall, but not with a fixed
frequency. In this section, we investigate how well our TFT
model can learn and interpret these patterns by conducting
experiments on data with these patterns.

A. Infection Trends

Since the start of the COVID-19 pandemic, various factors
such as lockdown measures and the emergence of different
variants have resulted in multiple waves of infection with dis-
tinct temporal patterns. To evaluate our model’s ability to learn
and generalize to different trends, we conducted experiments
on the third wave of COVID-19 [19]. Specifically, we tested
the model’s ability to predict the surge of infection, after the
peak infection is reached and the post-peak period. To this
end, we extended our dataset to more recent dates as reported
in Table III and performed experiments on three additional
splits (rising, falling, and post 3rd wave). The results, shown
in Fig. 7, indicate that our TFT model performs consistently
well across different trends of COVID-19 infection waves.

B. Seasonal Patterns

Periodic patterns in the incidence of COVID-19 cases can
reflect the contribution of various societal and epidemiological
factors that influence the spread, testing, and reporting of the
disease. Auto-correlation analysis is a common method used
to identify periodicity in time-series datasets. Auto-correlation
measures the degree of similarity between a time series and



(a) Rising 3rd Wave (b) Falling 3rd Wave (c) Post 3rd Wave

Fig. 7: Trend: TFT test performance on all US counties for additional data splits for different infection trends.

(a) Attention weights aggregated by past time
index showing high importance in the same
day the previous week.

(b) Weekly seasonality due to reporting. (c) Cyclic holiday patterns (Thanksgiving, Christmas).

Fig. 8: Persistent temporal patterns in infection forecasting and model attention weights.

a lagged version of itself at different time lags. Given a time
series Y1, Y2, · · · , YN at times t1, t2, · · · , tN , the lag k auto-
correlation function is defined as:

rk =

∑N−k
i=1 (Yi − Ȳ )(Yi+k − Ȳ )∑N

i=1(Yi − Ȳ )2
, (7)

where Ȳ is the mean of the time series. The auto-correlation
function returns a value between -1 and 1, with values close
to 1 indicating a strong positive correlation between the time
series and its lagged version, values close to -1 indicating a
strong negative correlation, and values close to 0 indicating
no correlation.

We aggregated the daily COVID-19 case incidence data by
dates and then plotted the auto-correlation for lags k ∈ [1, 21]
in Fig. 8b. Our analysis shows a clear weekly periodicity,
where the correlation peaks at lag day k = 7. This finding
is consistent with previous studies that have observed weekly
oscillations in infection and death rates during the first wave
of the COVID-19 pandemic [31] [32]. The weekly fluctuations
can be attributed to the way the health sector handled COVID-
19 test and case reporting [31], rather than any underlying
societal or biological factors. By learning and incorporating
such patterns, an epidemic model can make more accurate
forecasts of future incidence.

The TFT model’s ability to predict weekly patterns and
trends for both the train and test periods is demonstrated in
Fig. 6, as well as in a zoomed-in version with holidays shown
in Fig. 8c. This learning can be further analyzed by looking
at the attention weights (α(t, n, τ)) of the TFT model. For
a given time t and encoder position index n, the attention

weight assigned to a forecasting horizon τ can be determined.
By plotting the average attention weights for τ = 1 only, as
shown in Fig. 8a, we observe a clear weekly periodicity that
peaks at position index -7. This indicates that the input data
from the same day in the previous week received the most
attention from the model when forecasting for the next day
(n = 0).

C. Cyclic Patterns

We also observed a drop in reported cases on holidays,
which can be attributed to the same reasons as the weekly
patterns. During holidays, hospitals and COVID-19 test centers
often have reduced staffing and operating hours, leading to
fewer tests and reported cases [31]. However, since holiday
occurrences are relatively infrequent (e.g., yearly), it is more
challenging for the model to learn and incorporate this infor-
mation with only 2.5 years of data.

To evaluate the model’s performance in predicting holiday
effects, we plotted the ground truth and predicted cases from
some weeks before the end of the training period, till the end
of the test period in Fig. 8c, annotated with Veterans Day (Nov
11, 2021), Thanksgiving (Nov 25, 2021), and Christmas (Dec
24-25, 2021). Fig. 8c shows that the TFT model can correctly
predict the dip in reported cases during the Christmas holidays
in the test period. The attention weights also show drops on
those days, implying less focus from the model on holidays.

VIII. INTERPRETING SPATIAL PATTERNS

Understanding the spatial dynamics of the forecasting model
is crucial in comprehending the spread of COVID-19 across
different regions with diverse socio-economic backgrounds.



(a) Utah, Salt Lake (b) Florida, Hillsborough (c) Oregon, Multnomah

(d) Virginia, Brunswick (e) North Carolina, Yancey (f) Michigan, Ogemaw

Fig. 9: Spatial Trend: Cases prediction performance for six randomly selected US counties. The top row contains counties
selected from the top 100 US counties by population. The bottom row of counties is selected from the rest.

Spatial analysis can provide insights into the local factors that
influenced the transmission of the disease, leading to variations
in infection rates [33]. To shed light on this important aspect,
we posed the following research questions:

1) Can our model accurately predict COVID-19 infection
trends in diverse geographical locations?

2) How do the attention weights of the model vary across
different geographic regions?

By answering these research questions, we can gain a better
understanding of the model’s behavior in different demograph-
ics. Additionally, these insights can help further research to
explore ways to optimize the model’s performance for specific
regions and demographic groups to improve the accuracy of
COVID-19 infection forecasts.

A. Infection Trends at Different Locations

The spread and transmission of COVID-19 can vary signif-
icantly across counties due to local factors such as population
density, housing conditions, available medical facilities, and
the effectiveness of lockdown measures. In particular, large
cities tend to have more heterogeneous populations and greater
potential for the spread of infections. Therefore, it is crucial
that the forecasting model can accurately predict changing
infection trends, despite the geospatial differences between
these locations.

To demonstrate the effectiveness of our Temporal Fusion
Transformer (TFT) model, we selected six US counties at
random and plotted their predicted infection trends in Fig. 9.
The upper three counties were randomly chosen from the top
100 US counties by population, while the lower three counties
were randomly selected from the rest. The figure shows that
our model was able to accurately predict the infection trends
in each of these counties, despite their diverse characteristics
and infection rates.

In Fig. 9, we can observe that the population differences
across the counties are reflected in the reported COVID-19
cases. The smaller counties often have a ground truth of either
zero or very few infections, while the larger counties have
a higher number of infections as well as larger fluctuations.
Despite these scale differences, our model can accurately
predict the trends in all the counties. This indicates that
our model can generalize well across different demographic
groups and geographical locations, which is crucial for making
accurate forecasts and taking informed decisions.

B. Attention Focus across Counties

To further understand the impact of the TFT model’s at-
tention mechanism on forecasting COVID-19 infection cases,
we examine the variation in attention weights across different
counties. As discussed earlier, counties differ in their popula-
tion, socio-economic factors, and geographical location, which
can impact the spread of the epidemic. Therefore, attention
weights may vary depending on these factors. To quantify this,
we calculate the average attention weights for each county on
the previous day (position index -1 in Fig. 8a) for the next day
(τ = 1) prediction (α(t,−1, 1)). This allows us to observe how
attention weights differ across counties from the previous day
to the next day’s prediction. Analyzing these results provides
a more detailed interpretation of the relationship between the
attention weight of a particular day and the ground truth.
Although we present this analysis for one case, it can be
extended to other position indexes (n) and forecast horizons
(τ ) as well.

Fig. 10 provides the density maps of the cumulative
COVID-19 cases and their corresponding average attention
weights for each county using the Primary split outlined in
Table III. We utilized the US census bureau’s [34] shape
geometry and GeoPandas to plot the map, excluding geo-



(a) Cumulative COVID-19 cases across US counties (b) Avg. attention weights across US counties from TFT

Fig. 10: Spatial distribution of COVID-19 cases in US counties and corresponding attention weights from TFT.

graphically distant states such as Alaska and Puerto Rico
for convenience. To enhance visual clarity, we divided the
values into four quantiles to highlight the distinct clusters. The
map is useful in identifying counties with similar COVID-19
trends and attention weights, providing insight into the model’s
performance across various regions. This can aid in devising
tailored interventions and mitigation strategies in response to
the pandemic.

Fig. 11: Correlation density between COVID-19 cases predic-
tions and TFT model’s attention weights. Each point represents
a county summed over the full time duration.

As shown in Fig. 10, neighboring counties often have
similar densities in COVID-19 cases and attention weights.
For instance, the states of California (CA) and Pennsylvania
(PA) have a larger number of counties with higher case rates
and attention weights, while Idaho (ID) and Wyoming (WY)
exhibit lower infection counts and attention weights. Such non-
homogeneous distribution would be overlooked in state-level
analysis and underscores the importance of local heterogeneity
in this interpretation. Fig. 11 presents the correlation scatter
plot between log1p of cases and attention weight, revealing a
mostly positive linear relationship.

IX. INTERPRETING FEATURE IMPORTANCE

To analyze the variable importance, we computed the sum
of the weights assigned to each variable from the Variable

Selection Network (VSN) across the training set. We then
normalized the weights for each input feature to percentage
and presented them in Table VII. For the static covariates,
we observed that the age distribution has the highest weight.
Among the observed inputs, the past target values (cases) are
found to be the most important, which is expected since they
are directly related to the current infection rate.

TABLE VII: Feature importance from variable selection
weights (the highest values are in bold).

Feature Static Observed Known
Cases 38.26%
Age Distribution 54.45%
Health Disparities 45.55%
Vaccination 11.28%
Disease Spread 16.32%
Transmissible Cases 3.26%
Social Distancing 3.35%
SinWeekly 16.87% 72.85%
CosWeekly 10.66% 27.15%

X. RELATED WORK

In this section, we provide an overview of the literature
related to predicting COVID-19 infections using various ap-
proaches, including statistical, machine learning, and deep
learning methods. Additionally, we summarize related work
on interpreting such models.

A. Statistical and Machine Learning Models

Many efforts have been made to COVID-19 forecasting us-
ing statistical learning, epidemiological, and machine learning
models [35]. Different statistical models such as Susceptible
Infectious Recovery (SIR), and Susceptible Exposed Infectious
Recover (SEIR), have been used to simulate and forecast
the COVID-19 spread [1] [36]. These models provide useful
insights and are often easier to interpret. However, their
performance is limited by the number of complex influencing
factors and relationships they can capture, which is where
the machine learning-based models excel [4] [3] [37]. Models
like Auto-Regressive Integrated Moving Average (ARIMA) [5]



[4] [3], Seasonal Auto-Regressive Integrated Moving Average
(SARIMA) [3] and XGBoost [38] have been used to forecast
COVID-19 cases and deaths. These models can capture nonlin-
ear relationships between variables and have shown improved
performance compared to statistical models in some cases.
However, they may have limitations in dealing with high-
dimensional and temporal data.

B. Deep Learning Models

Deep learning has demonstrated remarkable performance
in time series forecasting [28] [39] and has been widely
adopted for predicting COVID-19 infections [35]. LSTM and
Bi-LSTM-based models are often superior to other statistical
and machine learning approaches in time-series forecasting
[7] [24] [40] [41]due to the ability of RNN-based models
to learn from sequential data. Moreover, [26] found that
Variational Auto Encoder (VAE) outperforms RNN-based deep
learning models in predicting daily confirmed and recovered
COVID-19 cases. New research using AI-based predictions
also discusses several issues, including the discovery of new
virus variants [42], limited data quality and quantity used
for model training, and the possibility that ML-based models
may not incorporate socioeconomic, cultural, and demographic
factors while learning the data [43]. However, interpreting
these models can be challenging due to their black-box nature,
which has led to efforts to develop methods for explaining their
predictions

C. Interpreting the Forecasting

As deep learning models are becoming more prevalent
in COVID-19 infection prediction, there is a growing need
to interpret the models and understand how they arrive at
their decisions [28]. For instance, DeepCOVID [44] utilized
RNN with auto-regressive inputs to predict COVID-19 cases
and provide insight into the input features’ contribution to
the prediction performance. Meanwhile, DeepCOVIDNet [45]
analyzed the features and their interactions to predict the
range of infected cases increase at the US county level, albeit
addressing this as a classification task instead of forecasting
the infection. Self-Adaptive Forecasting [12] adapts models
to non-stationary time-series data and provides explanations
with TFT. This approach was used to interpret state-level
COVID-19 death forecasts [12]. Additionally, [46] proposed a
rule-based local explainer that interprets predicted electricity
consumption based on aggregated features.

XI. CONCLUSIONS AND FUTURE WORK

Interpretation of deep learning models has gained significant
attention in recent years for their applications in various
domains, including social impact [47] [48]. In this paper, we
utilize the Temporal Fusion Transformer (TFT), an attention-
based deep learning time-series model, to achieve state-of-
the-art performance in forecasting US county-level infections
while enabling new forms of interpretability [49] through an-
alyzing complex spatiotemporal patterns. The proposed model
(1) outperforms other popular deep learning models such as

LSTM, Bi-LSTM, NBEATS, and NHiTS in all evaluation
metrics for multivariate multi-horizon forecasting, (2) exhibits
robust performance in predicting non-stationary trends of the
infections at different waves of the COVID-19 pandemic,
(3) interprets temporal patterns, such as weekly and holiday
seasonality in reported cases, through multi-head attention
weights, and (4) reveals spatial patterns using attention weights
that are correlated to the infection spread. The model performs
consistently across different counties, despite the large varia-
tion in infection rates due to diverse community-level char-
acteristics (e.g. population, health status, and socioeconomic
factors).

Our results show that the model learns multiple long-range
dependencies in highly dynamic forecasting problems. By in-
terpreting such spatiotemporal patterns at the individual county
level, we provide quantitative explanations of the impact of
the infection trends in a meaningful way. Future work can
focus on adaptively optimizing the model for dynamic data
while remaining robust against extreme events and analyzing
the sensitivity of input features to understand the impact
on communities. Finally, our work enables disentangling the
complex learning of TFT and similar analysis will be needed
in the future for making deep learning interpretable in many
other health and financial applications.
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APPENDIX

In this section, we present the mathematical formulations
of the evaluation metrics used in our work. At a given point
y, ŷ, and ȳ stand for the target ground truth, model predic-
tion, and average ground truth respectively. When calculating
these metrics at the US country level n = (i, t, τ), N =
(I, T, τmax), and |N | = ITτmax. Similarly, when evaluating
at the US county level (n = t, τ), N = (T, τmax, and |N | =
Tτmax). Here I is the set of counties, T is the length of that
time series period, τmax is the prediction horizon.
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